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An experimental investigation was conducted to describe the fluid flow about 
oscillating flat plates and to determine the magnitude and nature of forces 
acting on the plates at low Reynolds numbers. In  the experiment, the Reynolds 
number was varied from 1-01 to 1057.0; three period parameters, 1-57, 2-07 and 
4.71, were applied; two fluids, water and SAE 30 motor oil, and three flat plates 
of various sizes with or without end plates were used. The analysis of data re- 
sulted in graphical presentation of the relationships among the drag coefficient, 
the Reynolds number and period parameter. The drag coefficient becomes less 
dependent on the Reynolds number for values greater than 250. The relationship 
between the drag coefficient and period parameter is pronounced throughout 
the entire range of the Reynolds number tested, 

Introduction 
I n  the spaoe flight of a liquid-fuelled rocket, the propellant usually oscillates 

or sloshes due to the motion of the vehicle. Damping of the sloshing propellant 
is considered an important part of the control system design. Usually, the 
damping is accomplished by the use of a series of baffles mounted inside the 
propellant tank. 

A method of computing the damping or energy dissipation of a flat ring totally 
submerged in a viscous fluid which was contained in a cylindrical tank, was 
developed by Miles in 1958. The resulting equation has been used for calculating 
the damping under high g conditions in which the baffle drag coefficient was 
obtained from a series of experiments at moderately high Reynolds numbers. 
Under reduced gravity conditions, the theory by Satterlee & Reynolds (1964) 
shows that the sloshing frequency becomes small, resulting in a flow of low 
Reynolds number down to about unity. This finding has been substantiated by 
the flight of NASA’s Uprated Saturn I (Bnchanan & Bugg 1967) in which sloshing 
frequencies of less than 0.0033 cycles per second were observed for acceleration 
levels of the order of 0.02 cm/sec2. 

The application of Miles’s method for calculating damping under low g condi- 
tions has been considered inappropriate because of the lack of knowledge 
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regarding the baffle drag coefficient at low Reynolds numbers. To the authors’ 
knowledge, all other related studies made by Keulegan & Carpenter (1958), 
McNown & Keulegan (1959), Brater, McNown & Stair (1958), Morrison et al. 
(1950), Schwind, Scotti & skogh (19641, and Cole & Gambucci (1961) are also 
concerned with relatively high Reynolds numbers about 6000 and above. 

Therefore, a study was initiated to pursue the following objectives: experi- 
mentally determine the drag forces on two-dimensional oscillating flat plates at 
low Reynolds numbers; reduce the data in terms of relationships among the 
drag coefficient, Reynolds number and period parameter; observe and describe 
the flow phenomena about the oscillating flat plates; provide drag coefficient 
data in a proper form for establishing an equation for baffle damping at  low 
Reynolds numbers. 

In  the experiment, instead of an oscillatingflow witha fkedflatplatesimulating 
the case of the sloshing propellant, a flat plate was oscillated because of the better 
control and more accurate measurement of the oscillation in the low Reynolds 
number range. Although the difference between forces produced by moving a 
submerged object through a fluid and those produced in submerging the object 
in a uniform stream of comparable characteristics has been shown by Lamb 
(1932, pp. 12-20) and others, this difference for the case of a flat plate can be 
proved to be negligibly small if the plate is relatively thin as shown by Buchanan 
(1968) and Batchelor (1967, pp. 404-9). Hence, this experimental approach is 
justifiably adapted for this study. 

Experimental equipment and procedure 
Using the apparatus illustrated in figure 1, experiments were performed on 

the drag coefficient of a flat plate oscillated in a direction normal to the plate in 
an incompressible viscous fluid at low Reynolds numbers. For all of the tests 
the liquid was contained in a rectangular glass-walled tank with inside dimensions 
25-40 cm x 27.94 cm x 49.53 cm. 

A variable speed electric motor was used to drive a scotch yoke mechanism 
which converted the rotary motion into a sinusoidal translation. By varying 
the motor speed, i t  was possible to vary the frequency of the translation from 
approximately 1 radlsec up to IOradfsec. The scotch yoke was provided with 
an adjustable stroke, by means of which the amplitude of the motion could also 
be varied from 0 to 1.0cm. With these variables it was possible to vary the 
maximum velocity during a cycle between 0 and 8*89cm/sec. The plate was 
mounted on a sting extending downward from a moving carriage which was 
driven by the scotch yoke. The carriage itself consisted of a pair of rails which slid 
inside a corresponding set of bearings attached to the frame. This was to ensure 
that the motion of the plate was entirely translational. Two different fluids, 
water and SAE 30 motor oil, were used in the experiments to provide a wide 
range of Reynolds numbers. 

All plates tested were constructed of 0-32cm thick aluminium and had 
the following dimensions: (1) 20.32 cm x 2-54 cm, (2) 20.32 cm x 1.27 cm and 
(3) 20.32 cm x 1.27 om, but with 4.13 cm diameter end plates for eliminating 
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three-dimensional effects. The plates were located approximately 12.60 ern from 
the tank bottom and 25-40 cm from either end. Preliminary tests in which these 
distances were varied showed no detectable wall or free surface interference until 
the plate was within one or two plate widths of the boundary. In  the span-wise 
direction, a gap of approximately 2-54cm was left on either side between the 
plate and the tank wall. Initially it was planned to have only a minimum of 
clearance between the plate and the tank walls, but interference effects made it 
necessary to shorten the plates and add end plates to eliminate three-dimensional 
effects. 

For measuring the forces under 10 g ,  a sting supporting the plate was attached 
to  an arm cantilevered from the moving carriage. Strain gauges were then 
attached to this arm providing a simple but sensitive means of measuring the 
force on the plate. Actually, two strain gauge arms were used in the tests: the 
smaller had a thickness of 0.09 cm and was used to measure forces ranging up 
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FIGURE 1. Experimental apparatus. 
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to 5 g force; the other had a thickness of 0.16 cm and was used in most of the cases. 
Both arms were made of carbon steel and were interchangeable. A pair of strain 
gauges (nominal gauge factor 2-0) were wired on each arm, one on either side, 
to form a half bridge and connected to a Budd strain indicator box for doubling 
the sensitivity as well as providing temperature compensation. The signal from 
the strain gauge system was then passed through a variable electronic filter 
in order to eliminate high frequency interference caused by the vibration of the 
cantilevered sting and plate. The first mode natural frequency of the sting 
determined by plucking the sting in air, was approximately 3.5Hz and was 
almost identical with the frequency of the interference pattern. Because the 
frequency of the signal of interest was always less than 1 c/s, it  was simple to 
isolate and remove the unwanted interference. The filtered signal was displayed 
on an oscilloscope. 

In  addition to the force measurements, motor rev/min was also recorded with 
an induction activated sensor which was so arranged to generate a blip signal 
each time the mechanism completed a half cycle. This signal was recorded also 
on the oscilloscope. Permanent records of these traces were made on photographs 
with a Polaroid camera. 

This apparatus was calibrated from 0 to 10 gf by static loading using standard 
laboratory weights. The calibration signal was passed through the filter in the 
same fashion as for the actual tests and displayed on the oscilloscope for direct 
reading. 

Presentation of experimental data 
Because of the complexity of the flow phenomena, it was determined that the 

dimensional analysis might be the best available approach to  the problem of the 
drag force exerted on an oscillating flat plate in a viscous fluid. By using the 
principles of dimensional analysis, a set of dimensionless parameters may be 
formed in an implicit function from pertinent quantities involved in this flow 
problem as follows: 

where Fd denotes the drag force exerted on the oscillating flat plate, Urn the 
maximum velocity of the plate during a cycle, L the plate length, W the plate 
width, T the period of oscillation, p the fluid density, ,u the fluid viscosity. The 
first parameter in the function of (1) is called the drag coefficient, Ca; the second 
parameter is a period parameter; the third parameter is the Reynolds number; 
and the last term is a geometric parameter. 

A general form of the equation for the total force exerted on a submerged object 
in an unsteady flow, which consists of inertia force Fi and drag force F,, is given 
by Morrison et ul. (1950) as follows: 

(2) 

where Cm and C, are the coefficients of inertia and drag respectively, V, the object 

F = q + F a  = pC,V,dU/dt+~CaLWpUIUI, 
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volume, LW the effective area of the object, U the flow velocity. Analytical 
evaluation of the coefficients C, and C, can only be accomplished by solving the 
complete Navier-Stokes equations. While some analytical work has been done 
for non-oscillating laminar flow about a perpendicular plate, the problem becomes 
extremely difficult and has not been solved when oscillations are considered. 

For an oscillating flow, it may be assumed tbat 

u = - u,cose, ( 3 )  

where 8 is the time-dependent angular displacement. In  the case of an oscillating 
plate 8 can be measured so that it is equal to zero for the central position of the 
plate. Combining (2) and (3) shows that the inertial force I$ and drag force 
Fa are out of phase for an angle of in, signifying that, as Ft becomes zero, P then 
is entirely formed by Fd. In  order to obtain the coefficients c d  and C, for the 
oscillating flow empirically, Keulegan & Carpenter (1958) derived expressions of 
the coefficients through the Fourier analysis as given below: 

All quantities in the right-hand side of (4) and ( 5 )  are known or to be measured. 
By evaluating the integrals in (4) and (5 ) ,  values of C, and C, can be de- 

termined empirically. As pointed out by Keulegan & Carpenter, these coefficients 
are arbitrarily defined parameters and may be considered equivalent to the 
approximate averages of instantaneous values of the drag and inertial co- 
efficients. 

Since the drag force is predominant over the inertia force under the particular 
flow conditions of interest, and the inertia and drag forces are 90 degrees out of 
phase, the maximum total force occurs when the drag force is very near its 
maximum value and when the inertial force is nearly zero. This phenomenon is 
illustrated for test run 12 in figure 2. Therefore, c d  has been considered to be of 
main interest in this study. 

In  the evaluation of C,, the use of (4) was found to be laborious. A simplified 
method of evaluating C, has been developed by assuming that the maximum 
force is equal to the maximum drag force. Thus, an approximate value of C, 
can be obtained by the following equation: 

c d  = 2 P / p U L L w j  (6) 
where all quantities on the right-hand side of (6) are known or to be measured 
through experiments. 

For a wide range of Reynolds numbers tested, drag coefficients which were 
obtained by using the two methods, compared favourably as shown in table 1. 

Therefore, the simplified method was applied to reduce the bulk of data for Cd. 
It should be noted however that only a few values of the inertia coefficient, C,, 
were found by this method because of the dificulty in determining experi- 
mentally the value of Pi. 
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In  addition to C, and C,, the Reynolds number, UmpW/,u, and the period 
parameter Umr/W were calculated from the data reduction. In  this study, 
Urn = vw and r = 2n/w, where 7 is the amplitude of oscillation and w the driving 
frequency. 

Table 2 presents the calculated data for all 65 test runs. For runs 1 to 36 water 
was used as the test medium. A motor oil (SAE 30) was used for all other runs. 
End plates were added for all tests after run 29 for preventing end effects. 

In  order to visualize the flow field generated by the oscillating plate, a dye 
was injected near the plate. For the visualization, water was used and the end 
plates were removed from the model to provide a better view of the dye streaks. 
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FIGVRE 2. Comparison of calculated and experimental data for run 12. 0, experimental 
force; __ , calculated inertial force; - - - , calculated drag force; - - -, calculated total 
force. 

C, by simplified Reynolds 
Run no. Cd by (4) method number 

12 6.84 6.85 531 
42 16.97 16.60 4.3 

TABLE 1 

Based on the analysis of photographed dye streaks, a series of sketches depicting 
the vortex flow field around the oscillating plate is presented in figure 3. The 
sequence of sketches in figure 3 illustrates the flow field as follows: (i) as the 
plate starts to move vortices are formed at the edge of the plate; (ii) at  the end 
of the stroke the vortices are a t  their maximum size and are still attached; 
(iii) as the plate begins to move in the other direction, the old vortices are pushed 
aside and new vortices begin to form on the downstream side of the plate; (iv) the 
resulting vortex combination is U-shaped; (v) as the plate continues to move to 
the central position, the U-shaped vortices tend to break up into smaller vortices. 
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A nearly identical fluid behaviour was observed by Schwind et al. (1964) using 
a fixed plate in a sinusoidally varying stream. 

The data in table 2 are presented in figures 4, 5 and 6 to graphically illustrate 
the findings of this study. Six values of C, were plotted against the Reynolds 
number for a given period parameter of 4-71 and presented in figure 7. 

I-. Displacement 

I n oc '  

6 
1- I 

FIGURE 3. Sequence of sketches of flow field. 

Discussion of experimental results and conclusions 
Figure 4 compares the drag coefficient data as a function of the Reynolds 

number for cases with and without the end plates. Since no significant differences 
were observed for the two cases, it was deduced that three-dimensional effects 
were not appreciable in this problem. In any event the end plates were employed 
wherever possible and did appear to reduce the scattering of experimental data. 
Also indicated in this figure is the slight dependence of drag coefficient on 
Reynolds number over the range from 250 to 1000. The same observation was 
made by Keulegan & Carpenter (1939,  although their findings only extended 
down to a Reynolds number of 4200. It appears then that for values of Reynolds 
number above 250, the drag coefficient is influenced primarily by the period 
parameter. 

Figure 5 compares the new drag coefficient data with that of Keulegan & 
Carpenter's study as a function of period parameter. The Reynolds number is 
not constant in this figure but varies from point to point. All of these data were 
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FIGURE 5. Existing data. 0, from Keulegan & Carpenter (1958); 0, new. 

selected from the high Reynolds number region previously described so that the 
data shown here should be only a function of period parameter. As indicated, 
data from these tests were in reasonable agreement with that obtained by 
Keulegan & Carpenter and exhibited the same variation with period parameter, 

Figure 6 presents all of the data from these tests. Drag coefficient C, is shown 
to be a function of the Reynolds number and the period parameter U,r/W. 
The curves drawn through the data in this figure were fitted by eye and show C, 
to be relatively independent of the Reynolds number for values of the Reynolds 

U,T/ w. 
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number greater than 250. Below this value the drag coefficient increases rapidly, 
suggesting a transition in the flow at this point. Unfortunately this could not be 
confirmed visually because the oil used for the low Reynolds number cases was 
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FIGURE 6. Drag coefficient as a function of Reynolds number. 
Values of U,T/W: 0, 1.58; 0, 2.07; 0, 4.71. 

I 

urn w 
PIP 

Reynolds number ~ 

FIGURE 7. Inertia coefficient as a function of Reynolds number 
at  period parameter of 4-71. 

very dark and did not permit photography. However, it was distinctively noted 
that the relationship between the drag coefficient and period parameter is pro- 
nounced throughout the entire range of the Reynolds number tested. 

For the convenience in engineering applications the relationships among the 
drag coefficient, period parameter, and the Reynolds number are expressed in a 
mathematical form, based on the empirical data obtained from this study, as 
follows: 
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where Pe = U,r/ W denotes the period parameter and Re = Urn Wplp the Reynolds 
number. It must be noted that (7)  is applicable for P, ranging from 1.57 to 4.71 
and Re from 1-01 to 1057. 

Figure 7 yields an expression of the relationship between the lift coefficient, 
C, and the Reynolds number for a given period parameter. Due to the lack of 
sufficient analyzed data points available, the above expression is considered 
strictly qualitative. 
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